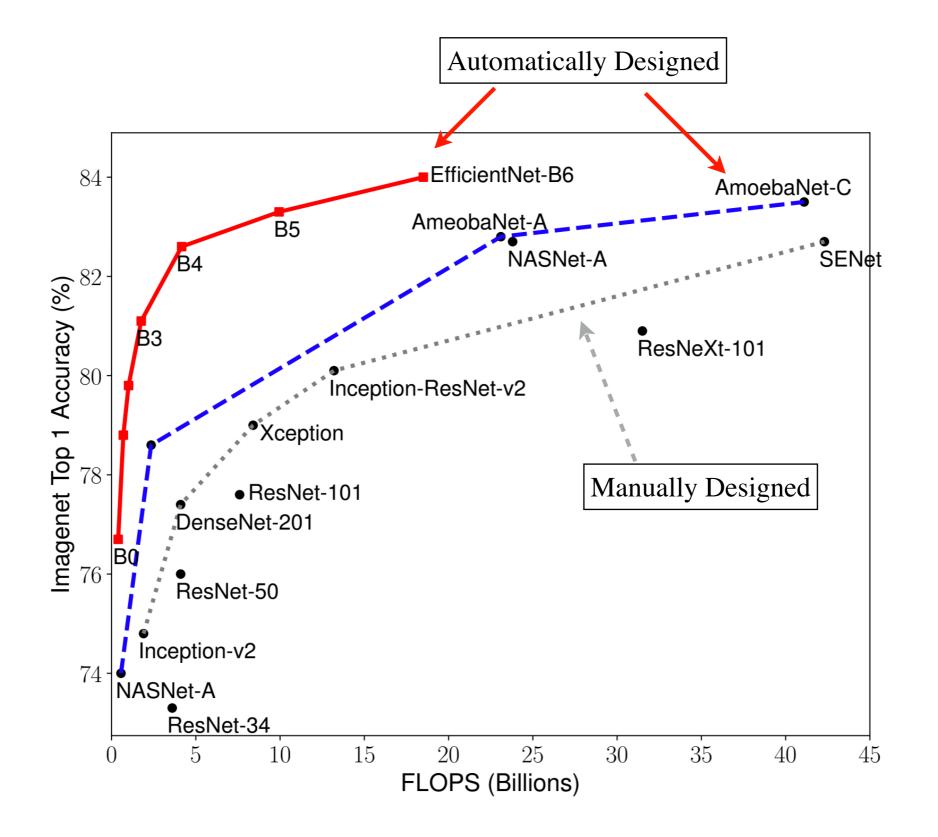
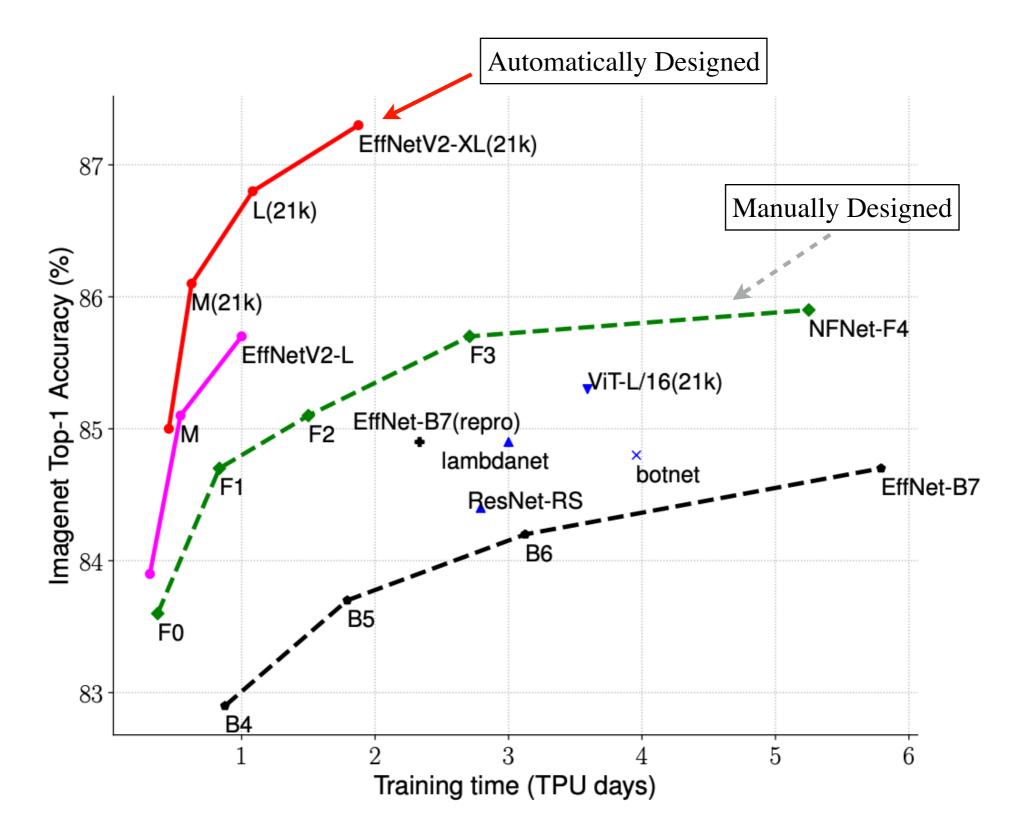
Extending the Search from Architecture to Hyperparameter, Hardware, and System

Xuanyi Dong http://xuanyidong.com

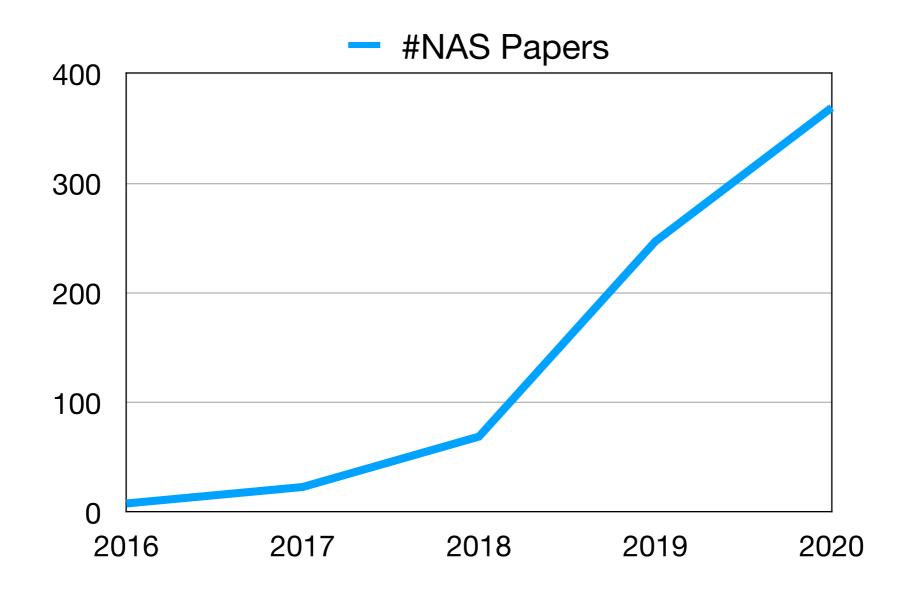
Auto-Architecture vs. Manual Architecture



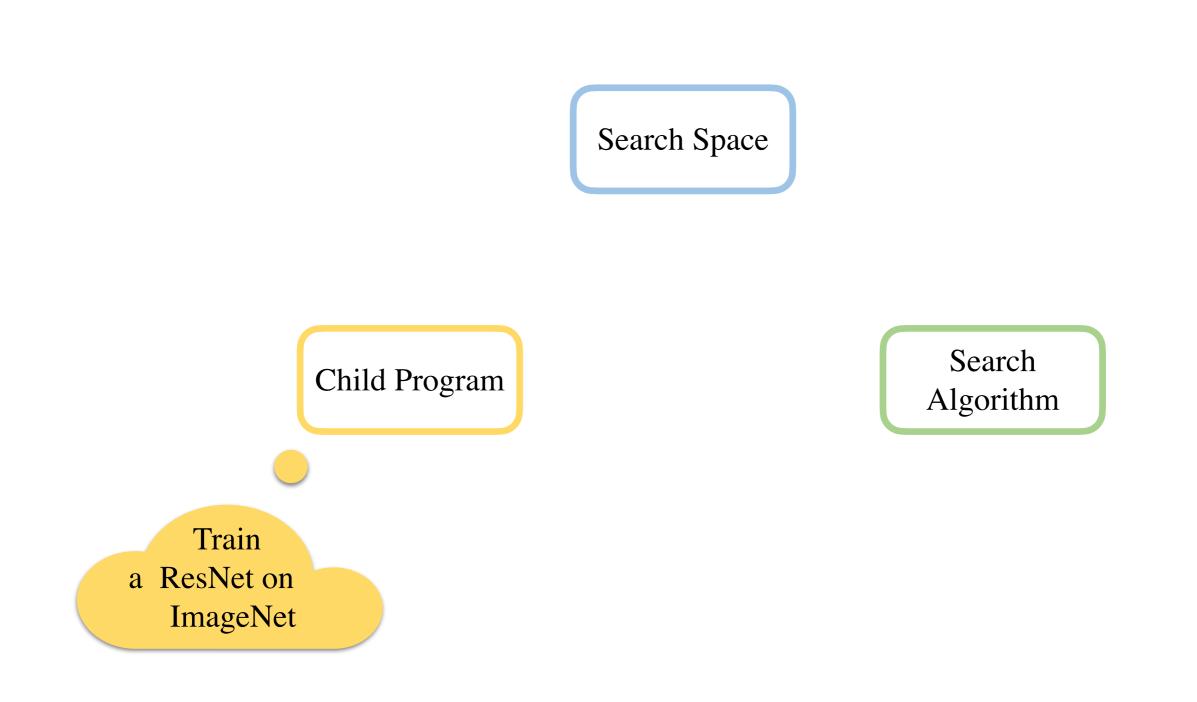
Auto-Architecture vs. Manual Architecture

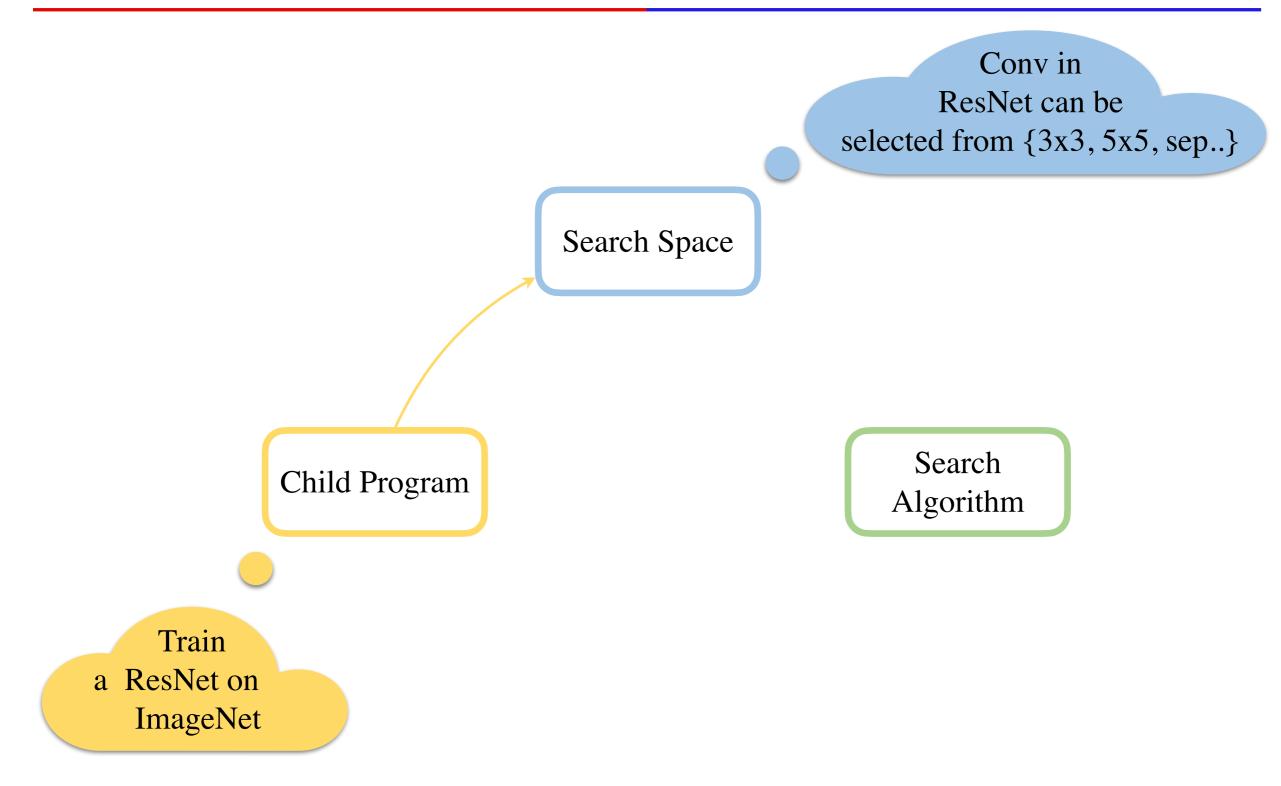


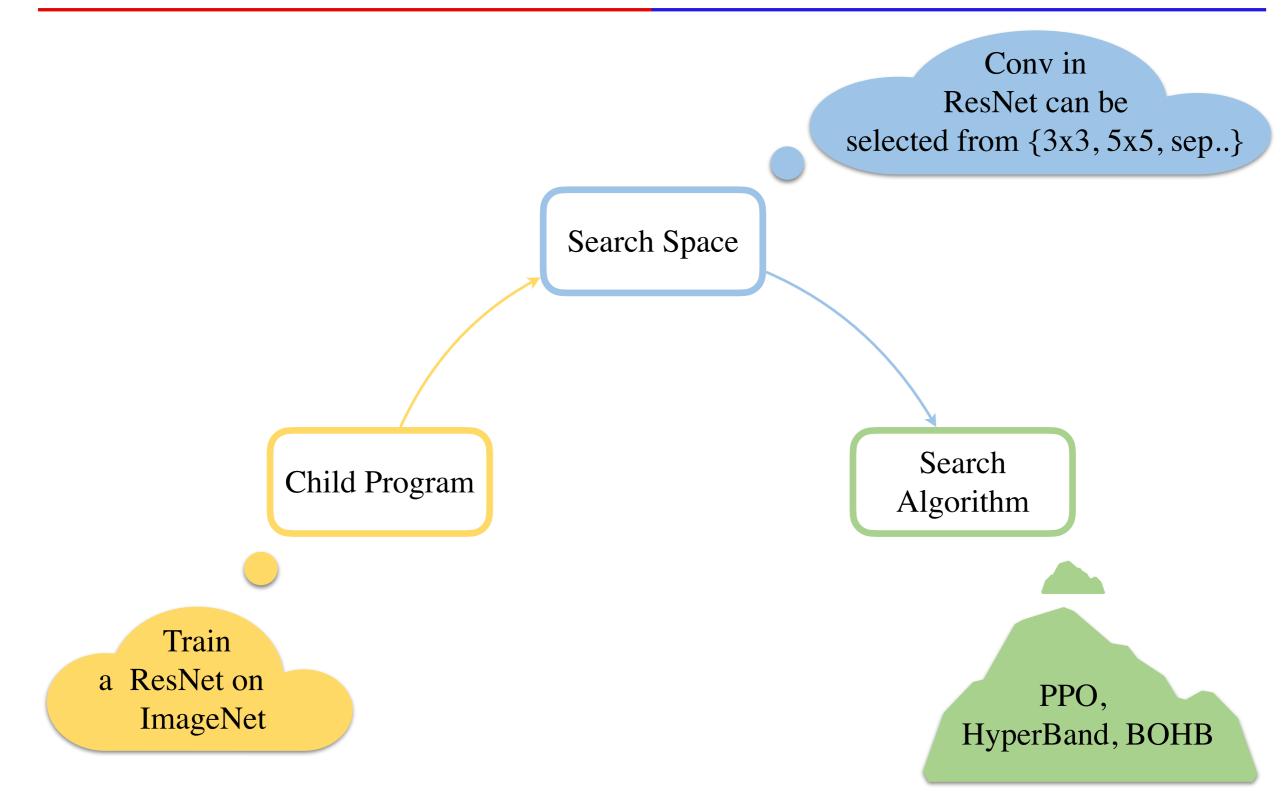
Neural Architecture Search Grows Fast

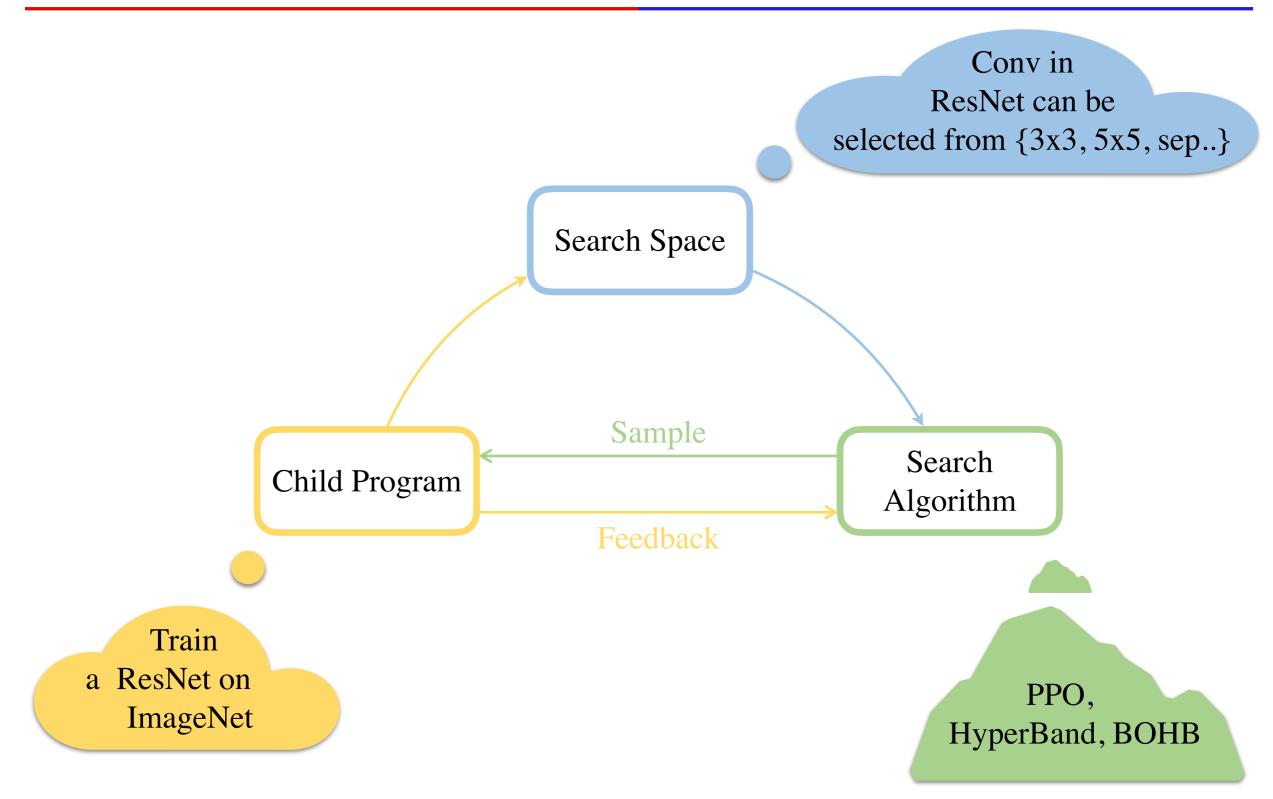


The number of NAS papers rapidly increases.

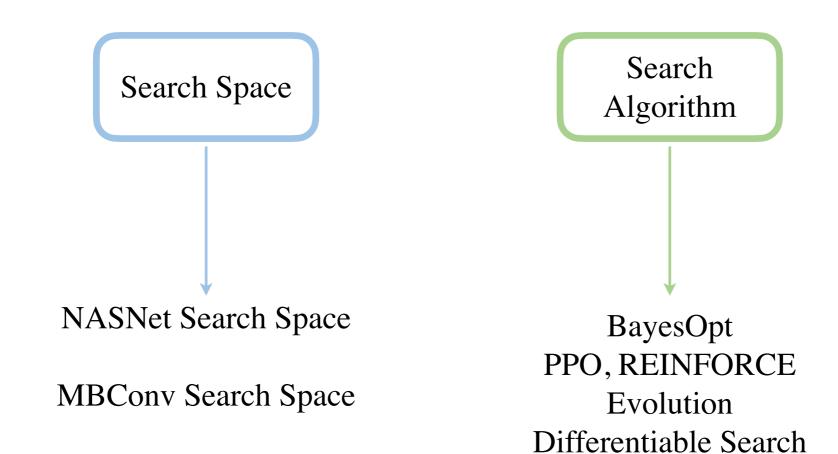








What is important to NAS?

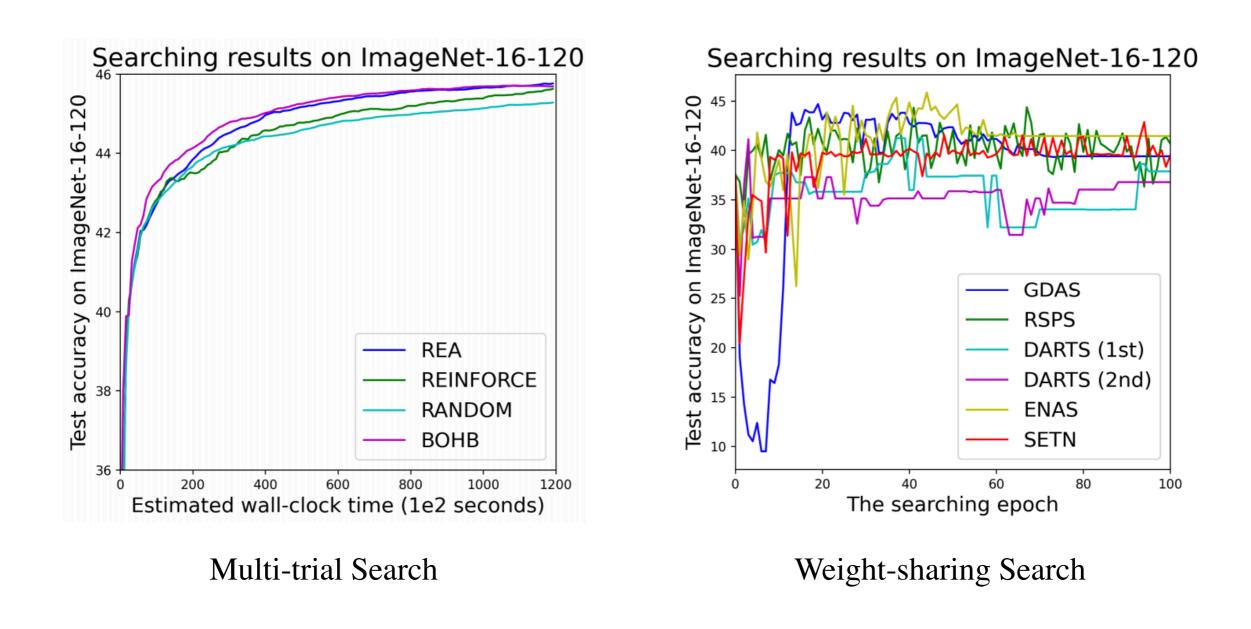


NAS's performance is saturated - Search Space

Search Space		Methods	CIFA	CIFAR-10		CIFAR-100		ImageNet-16-120	
	Туре	Name	validation	test	validation	test	validation	test	
	Multi-trial	REA REINFORCE RANDOM BOHB	$\begin{array}{c c} 91.25 \pm 0.31 \\ 91.12 \pm 0.25 \\ 91.07 \pm 0.26 \\ 91.17 \pm 0.27 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 72.28 {\pm} 0.95 \\ 71.80 {\pm} 0.94 \\ 71.46 {\pm} 0.97 \\ 72.04 {\pm} 0.93 \end{array}$	72.23 ± 0.84 71.86 ± 0.89 71.55 ± 0.97 72.00 ± 0.86	$\begin{array}{c} 45.71 {\pm} 0.77 \\ 45.37 {\pm} 0.74 \\ 45.03 {\pm} 0.91 \\ 45.55 {\pm} 0.79 \end{array}$	45.77 ± 0.80 45.64 ± 0.78 45.28 ± 0.97 45.70 ± 0.86	
Topology Search Space S _t	Weight Sharing	RSPS DARTS (1st) DARTS (2nd) GDAS SETN ENAS	$\begin{array}{c c} 87.60 \pm 0.61 \\ 49.27 \pm 13.44 \\ 58.78 \pm 13.44 \\ 89.68 \pm 0.72 \\ 90.00 \pm 0.97 \\ 90.20 \pm 0.00 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		68.26 ± 0.96 61.26 ± 4.43 60.49 ± 4.95 68.17 ± 2.50 69.36 ± 1.72 70.67 ± 0.62	$ \begin{vmatrix} 39.73 \pm 0.34 \\ 38.07 \pm 2.90 \\ 37.56 \pm 7.10 \\ 39.55 \pm 0.00 \\ 39.77 \pm 0.33 \\ 40.78 \pm 0.00 \end{vmatrix} $	40.69 ± 0.36 37.88 ± 2.91 36.79 ± 7.59 39.40 ± 0.00 39.51 ± 0.33 41.44 ± 0.00	
		ResNet Optimal	90.86 91.61	93.91 94.37 (94.37)	70.50 73.49	70.89 73.51 (73.51)	44.10 46.73	44.23 46.20 (47.31)	
Size	Multi-trial	REA REINFORCE RANDOM BOHB	$\begin{array}{c c} 90.37 \pm 0.20 \\ 90.25 \pm 0.23 \\ 90.10 \pm 0.26 \\ 90.07 \pm 0.28 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 70.23 {\pm} 0.50 \\ 69.84 {\pm} 0.59 \\ 69.57 {\pm} 0.57 \\ 69.75 {\pm} 0.60 \end{array}$	70.11 ± 0.61 69.96 ± 0.57 69.72 ± 0.61 69.90 ± 0.60	$\begin{array}{c c} 45.30 \pm 0.69 \\ 45.06 \pm 0.77 \\ 45.01 \pm 0.74 \\ 45.11 \pm 0.69 \end{array}$	$45.94{\pm}0.92$ $45.71{\pm}0.93$ $45.42{\pm}0.86$ $45.56{\pm}0.81$	
Search Space \mathcal{S}_s	Weight Sharing	channel-wise interpolation masking + Gumbel-Softmax masking + sampling	$\begin{array}{c c} 90.71 {\pm} 0.00 \\ 90.41 {\pm} 0.10 \\ 89.73 {\pm} 0.37 \end{array}$	$\begin{array}{c} 93.40 {\pm} 0.00 \\ 93.14 {\pm} 0.13 \\ 92.78 {\pm} 0.30 \end{array}$	$\begin{array}{c} 70.30 {\pm} 0.00 \\ 70.30 {\pm} 0.00 \\ 69.67 {\pm} 0.22 \end{array}$	$\begin{array}{c} 70.72 {\pm} 0.00 \\ 70.72 {\pm} 0.00 \\ 70.11 {\pm} 0.33 \end{array}$	$\begin{array}{c c} 44.73 \pm 0.00 \\ 45.71 \pm 0.39 \\ 44.70 \pm 0.60 \end{array}$	$\begin{array}{c} 47.17{\pm}0.00\\ 46.38{\pm}0.27\\ 45.11{\pm}0.76\end{array}$	
		Largest Candidate Optimal	90.71 90.71	93.40 93.40 (93.65)	70.30 70.92	70.72 70.12 (71.34)	44.73 46.73	47.17 45.10 (47.40)	

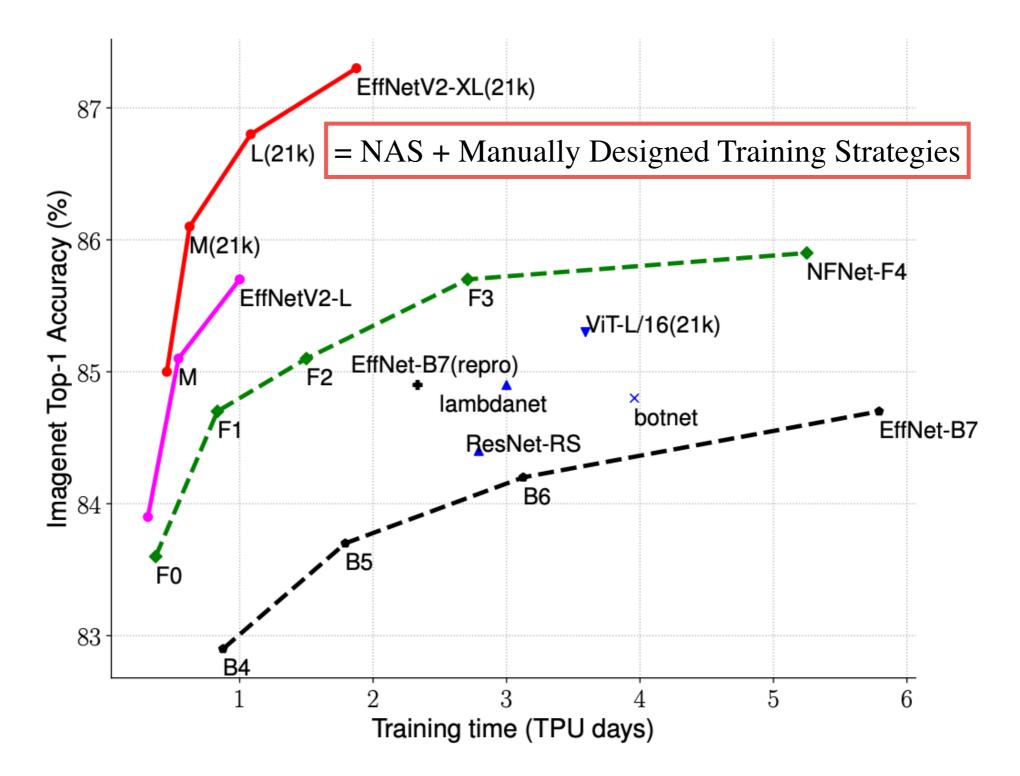
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size, IEEE TPAMI 2021

NAS's performance is saturated - Search Algorithm

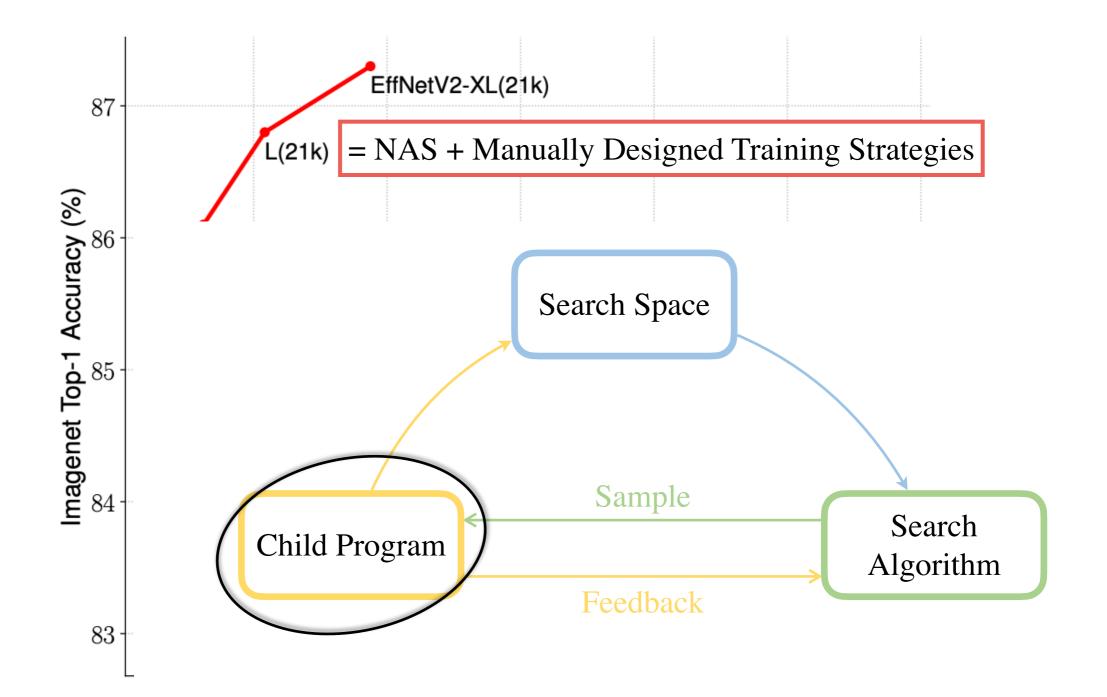


NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size, IEEE TPAMI 2021

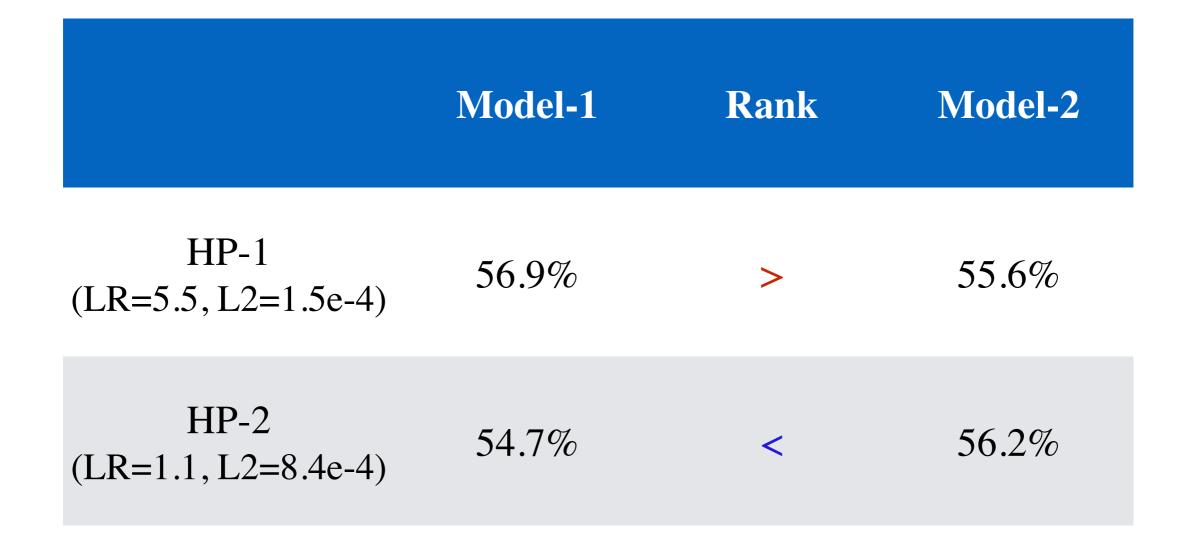
NAS is sub-optimal



NAS is sub-optimal



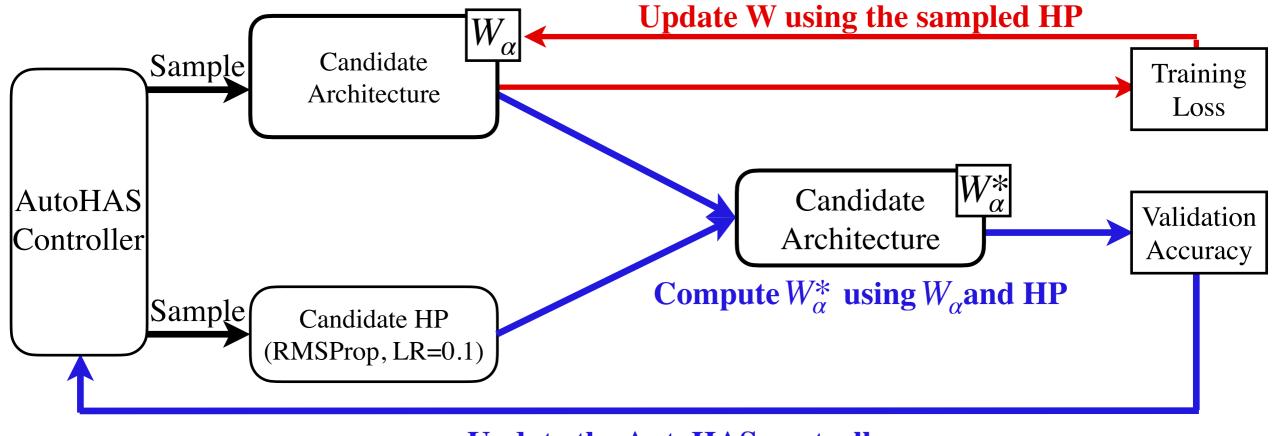
NAS is sub-optimal



AutoHAS: Efficient and Joint Search

	learning rate	weight decay	augmentation	dropout	architecture	efficient
Bayesian	\checkmark	\checkmark	\checkmark			×
RL or Evolution						×
PBT	\checkmark				×	×
Gradient Descent on LR		×	×	X	×	
Hypergradient	×			×		
NAS (Weight Sharing)	×	X	×	×		
AutoHAS	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark

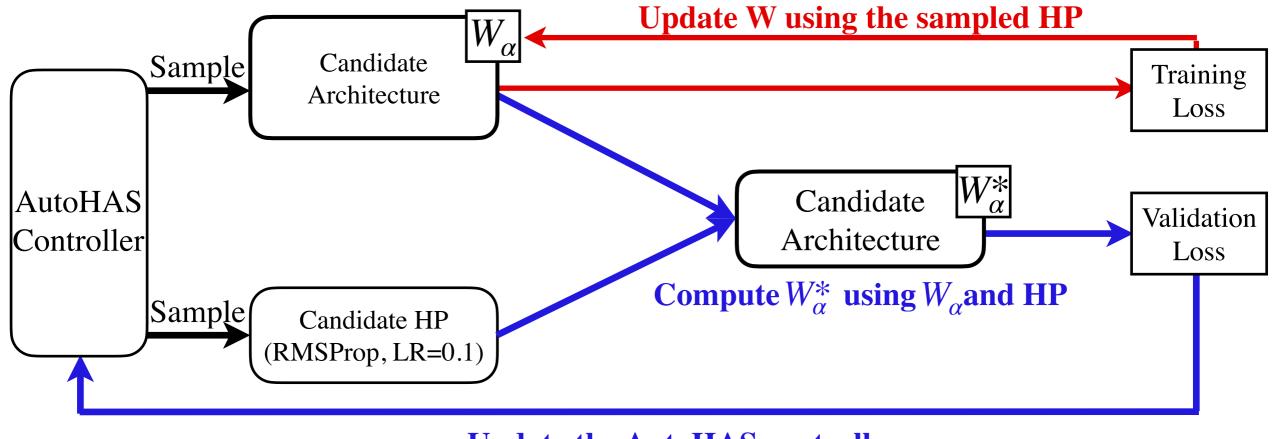
AutoHAS: Efficient and Joint Search



Update the AutoHAS controller

Integrate REINFORCE into AutoHAS

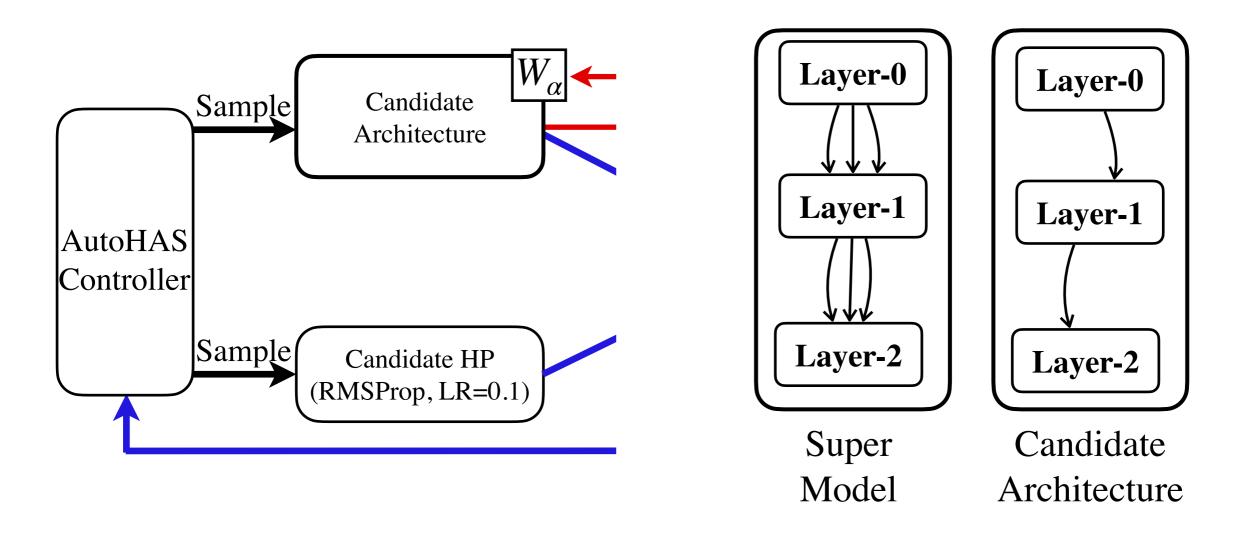
AutoHAS: Efficient and Joint Search



Update the AutoHAS controller

Integrate Differentiable Search into AutoHAS

AutoHAS: Weight Sharing



AutoHAS: Differentiable vs. REINFORCE

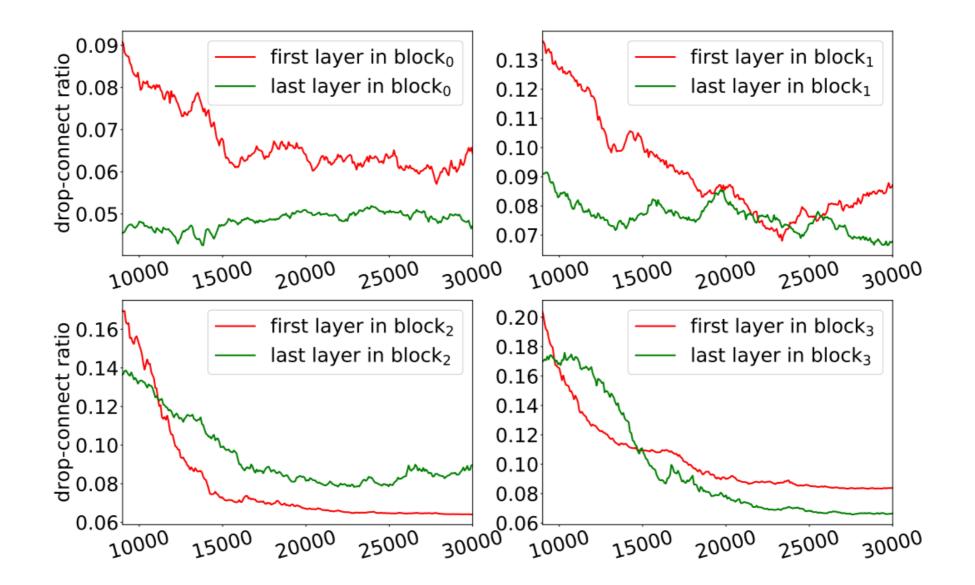
	#Params	#FLOPs	Accuracy	cy Search Cost	
	(MB)	(M)	(%)	Memory (GB) Time (TPU	
Baseline model	1.5	35.9	50.96	1.0	44.8
AutoHAS (Differentiable)		36.1	52.17	6.1	92.8
AutoHAS (REINFORCE)		36.3	53.01	1.8	54.4

Search for architecture, learning rate, weight decay

AutoHAS improves SoTA models

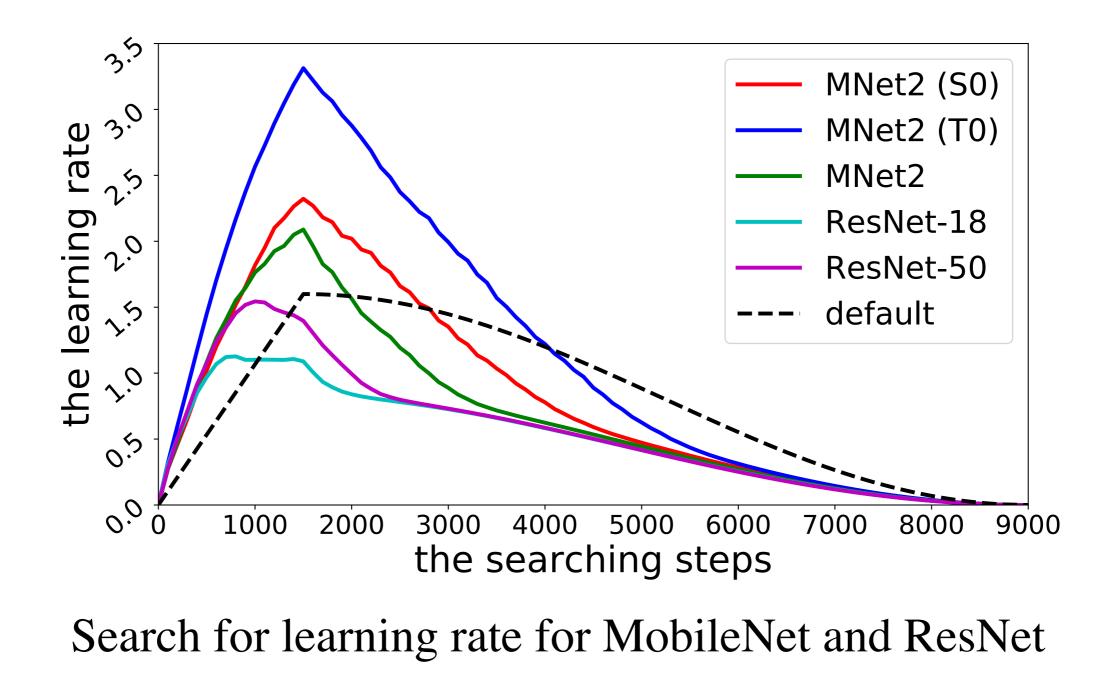
Model	Method	#Params (M)	#FLOPs (M)	Top-1 Accuracy (%)
ResNet-50	Human	25.6	4110	77.20
	AutoHAS	25.6	4110	77.83 (+0.63)
EfficientNet-B0	NAS	5.3	398	77.15
	AutoHAS	5.2	418	77.92 (+0.77)

AutoHAS-discovered Hyperparameters

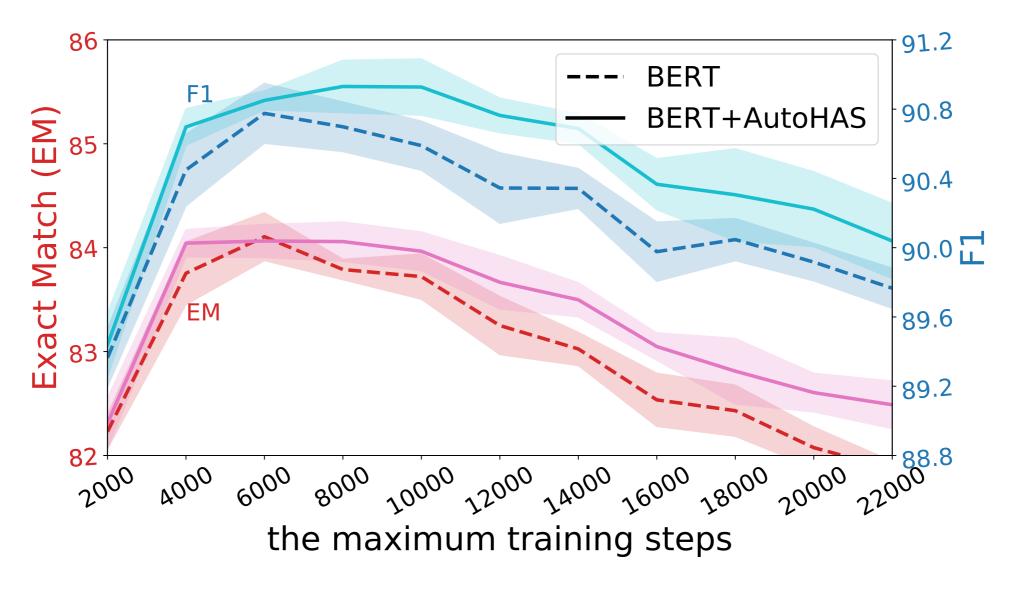


Search for drop-path ratio in EfficientNet

AutoHAS-discovered Hyperparameters



AutoHAS-discovered Hyperparameters



Search for learning rate and weight decay for BERT

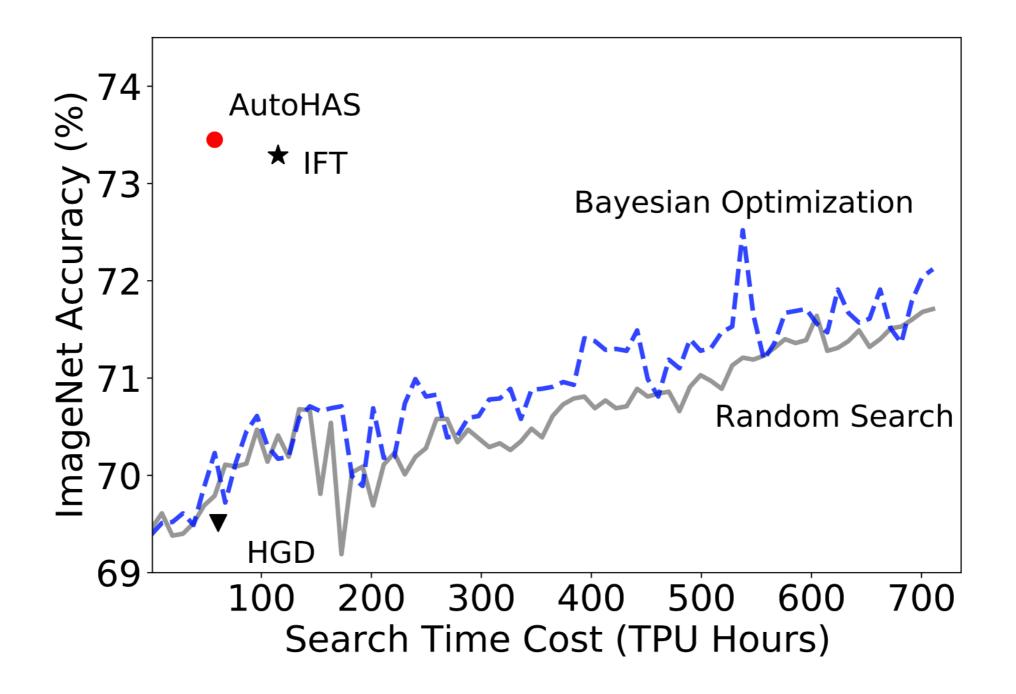
AutoHAS works on different datasets

Method	Search Space	CIFAR-10	CIFAR-100	Stanford Cars	Oxford Flower	SUN-397
MobileNetV2 (baseline)		94.1	76.3	83.8	74.0	46.3
AutoHAS AutoHAS AutoHAS	Weight Decay MixUp Arch	95.0 94.1 94.5	77.8 77.0 76.8	89.0 85.2 84.1	84.4 79.6 76.4	49.1 47.4 46.3
AutoHAS	MixUp + Arch	94.4	77.4	84.8	78.2	47.3
AutoHAS	Weight Decay + MixUp	95.0 (+0.9)	78.4 (+2.1)	89.9 (+6.1)	84.4 (+10.4)	50.5 (+4.2)

AutoHAS works on different datasets

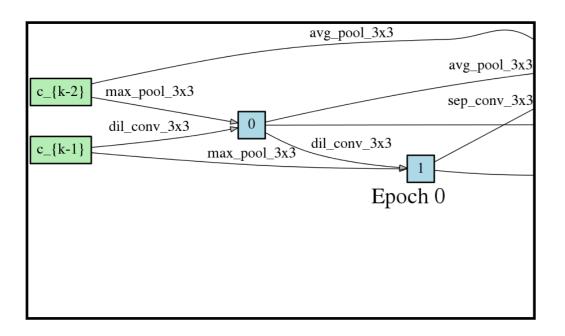
Method	Search Space	CIFAR-10	0	1	l Accuracy (%) Oxford Flower	SUN-397
MobileNetV2 (baseline)	94.1	76.3	83.8	74.0	46.3	
AutoHAS	Weight Decay	95.0	77.8	89.0	84.4	49.1
AutoHAS	MixUp	94.1	77.0	85.2	79.6	47.4
AutoHAS	Arch	94.5	76.8	84.1	76.4	46.3
AutoHAS (Joint)	MixUp + Arch	94.4	77.4	84.8	78.2	47.3
AutoHAS (Sequential)	MixUp + Arch	94.4	77.6	85.5	79.6	48.3
AutoHAS (Joint)	Weight Decay + MixUp	· · ·	78.4 (+2.1)	89.9	84.4	50.5
AutoHAS (Sequential)	Weight Decay + MixUp		78.2	90.5 (+6.8)	85.4 (+11.4)	50.8 (+4.5)

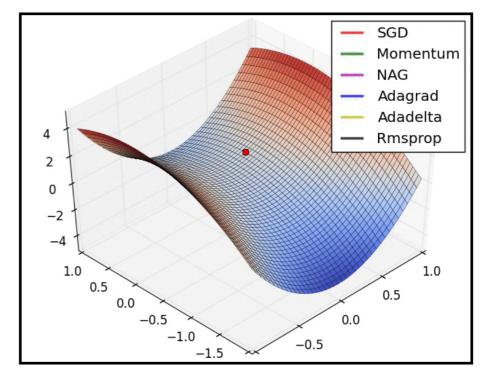
AutoHAS vs. other HPO methods



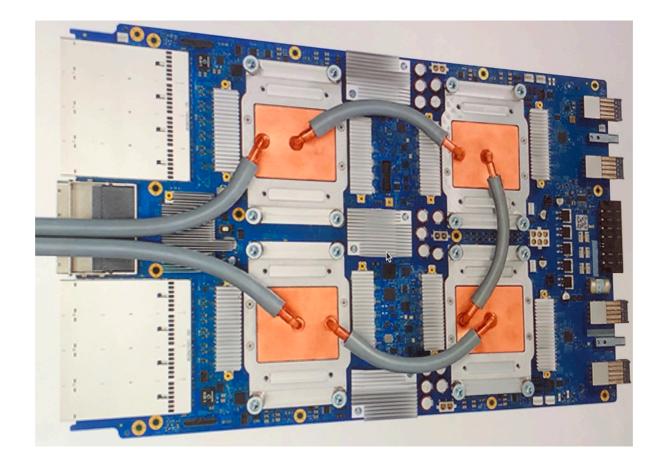
AutoHAS: Efficient Hyperparameter and Architecture Search, NAS@ICLR 2021

What's else?

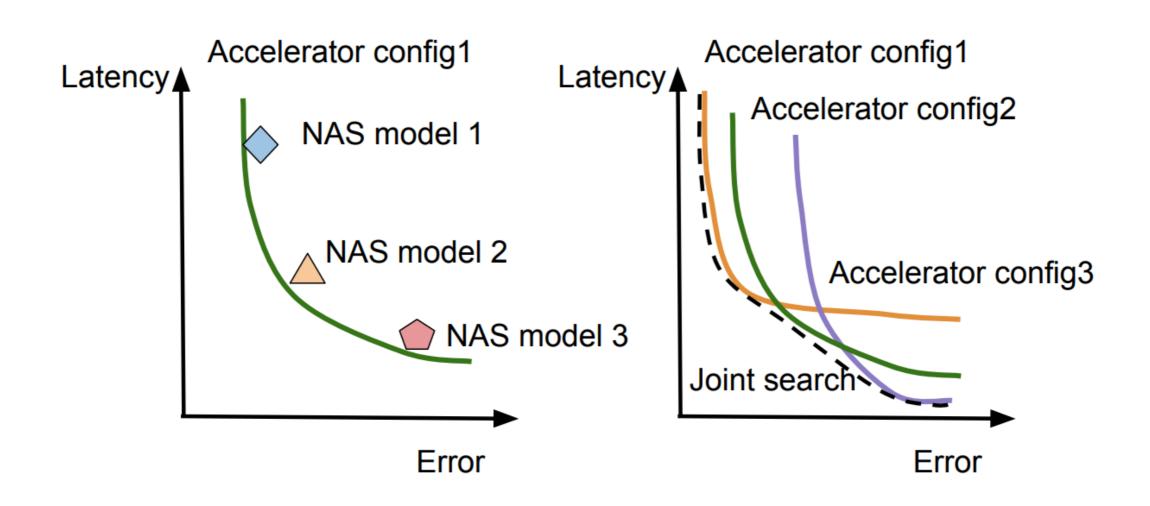




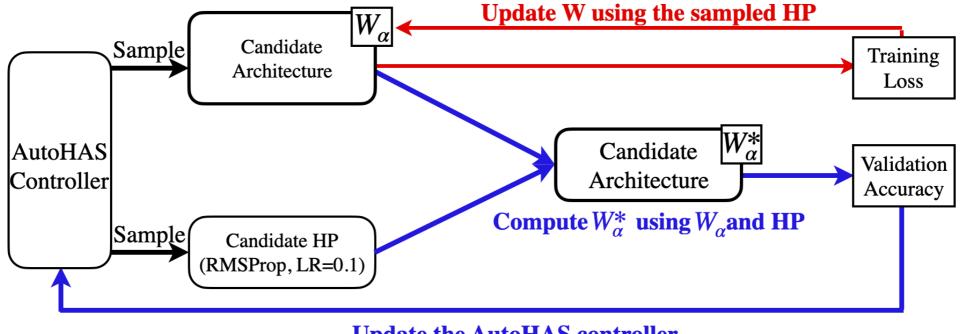
What's else?



NAHAS: Better Pareto Frontier



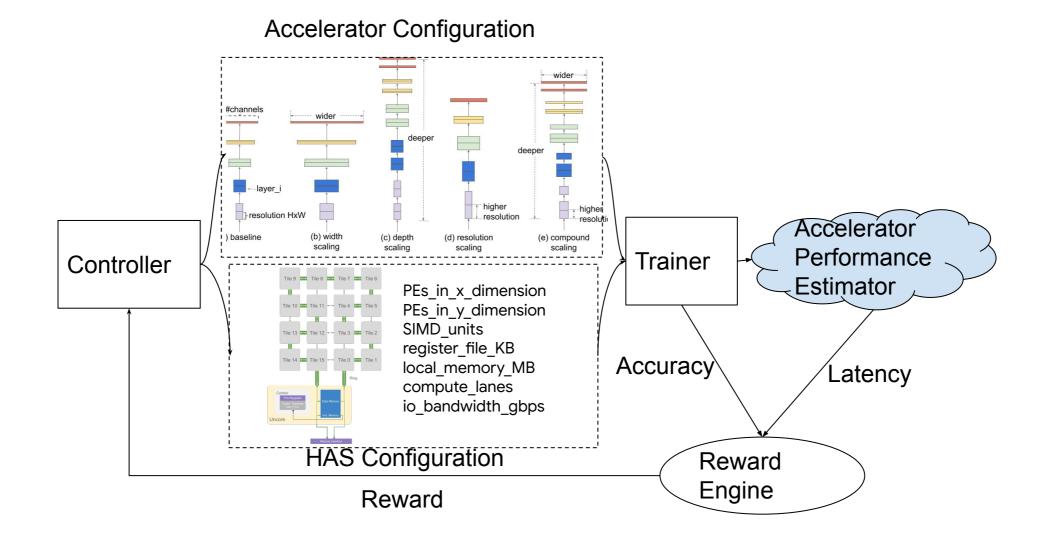
Joint Architecture and Accelerator Search



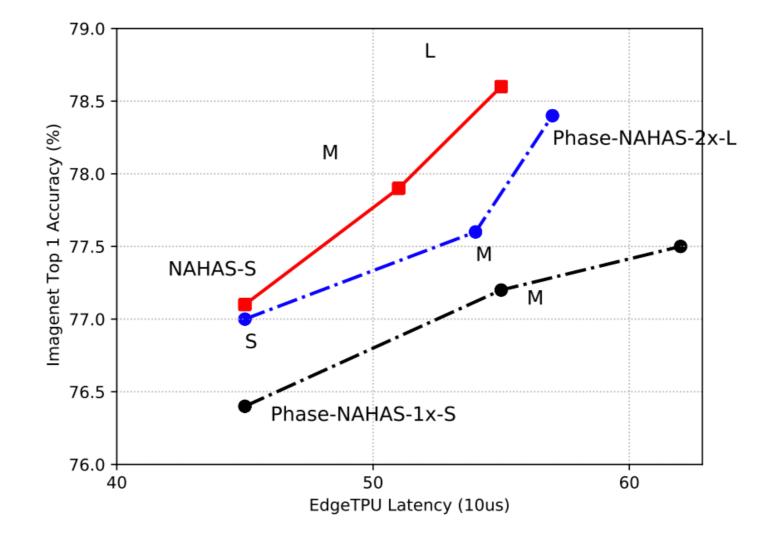
Update the AutoHAS controller

AutoHAS cannot handle hardware design

Joint Architecture and Accelerator Search



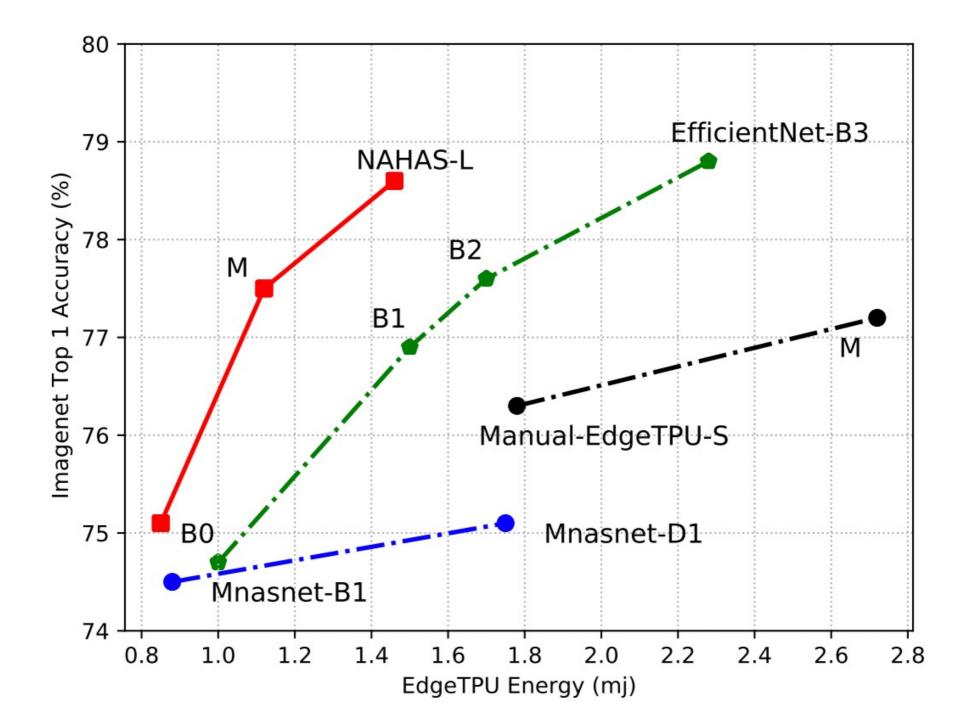
Joint Search vs. Phase Search



Multi-trial vs. One-shot

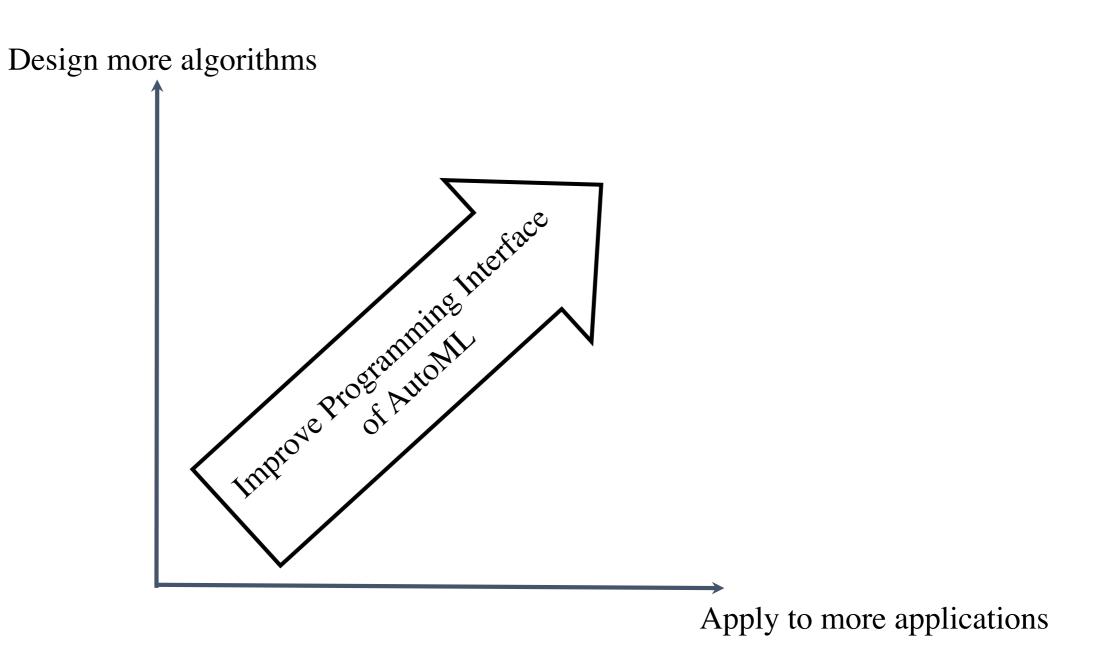
Model	Top-1 Acc.	Latency in ms (Ratio-to-best)	Energy in mJ (Ratio-to-best)
EfficientNet-B0 (Tan & Le, 2019) wo SE/Swish	74.7%	0.35 (1.17x)	1.00 (1.64x)
MobileNetV2 (Sandler et al., 2018)	74.4%	0.30 (1.00x)	0.70 (1.15x)
MnasNet-B1 (Tan et al., 2019)	74.5%	0.41 (1.37x)	0.88 (1.44x)
ProxylessNAS (Cai et al., 2019)	74.8%	0.42 (1.40x)	0.98 (1.61x)
Manual-EdgeTPU-small	76.2%	0.42 (1.40x)	1.78 (2.91x)
IBN-only fixed accelerator	74.6%	0.38 (1.27x)	0.82(1.34x)
IBN-only NAHAS multi-trial	74.9%	0.30	0.75 (1.23x)
IBN-only NAHAS oneshot	76.5%	0.35 (1.17x)	0.61
EfficientNet-B1 (Tan & Le, 2019) wo SE/Swish	76.9%	0.51 (1.04x)	1.50 (1.53x)
MnasNet-D1 (Tan et al., 2019)	75.1%	0.55 (1.12x)	1.75 (1.78x)
Fixed accelerator multi-trial w fused-IBN	75.3%	0.52 (1.06x)	1.32 (1.35x)
IBN-only NAHAS multi-trial	77.4%	0.52 (1.06x)	1.50 (1.53x)
IBN-only NANAS oneshot	76.8%	0.49	0.98
EfficientNet-B3 (Tan & Le, 2019) wo SE/Swish	78.8%	0.72 (1.12x)	2.28 (1.56x)
Manual-EdgeTPU-medium	77.2%	0.62	2.72 (1.86x)
MobilenetV3 w SE	76.8%	1.44 (2.32x)	4.00 (2.74x)
Fixed accelerator multi-trial w fused-IBN	78.2%	0.74 (1.19x)	1.75 (1.20x)
NAHAS multi-trial w fused-IBN	79.5%	0.72 (1.12x)	1.46

Co-design Improves > 1% ImageNet Accuracy

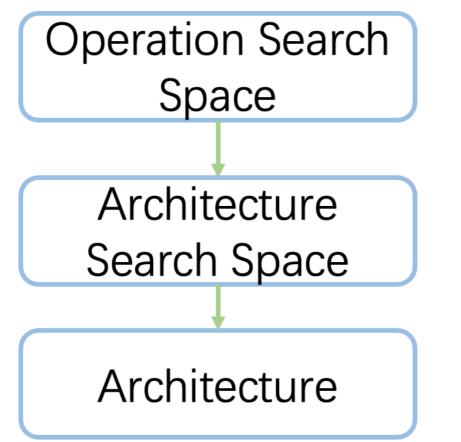


AutoML: System Design

Target: Scale AutoML horizontally and vertically



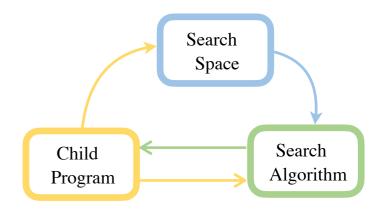
Example 0: Triple-level Search



+ - x / sqrt ...

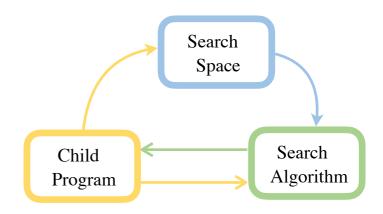
3x3-conv, <u>depthwise</u>-conv dilated-conv, pool, att., ...

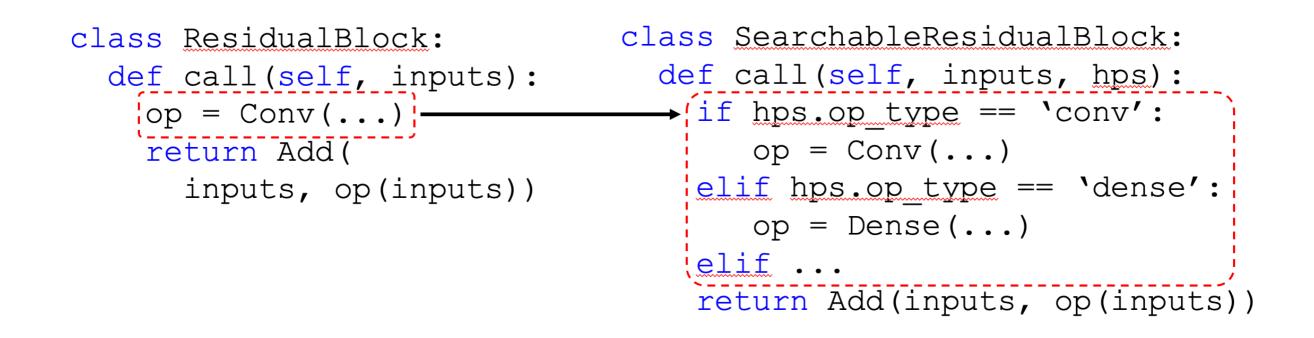
Example 1: Coupling between CP and SS



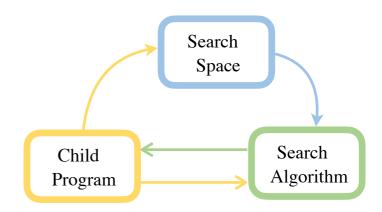
```
class ResidualBlock:
  def call(self, inputs):
    op = Conv(...)
    return Add(
        inputs, op(inputs))
```

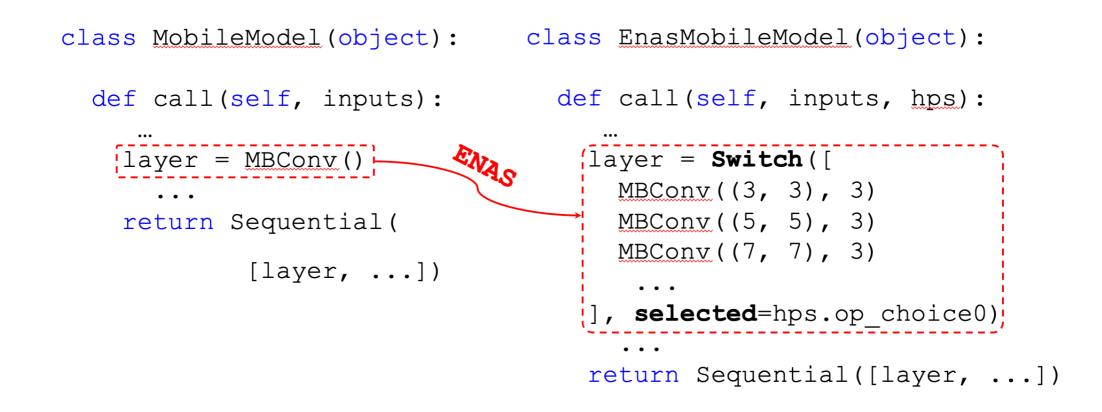
Example 1: Coupling between CP and SS



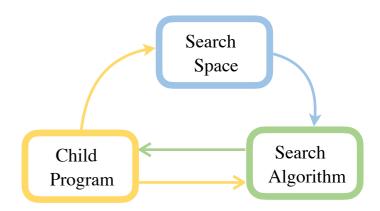


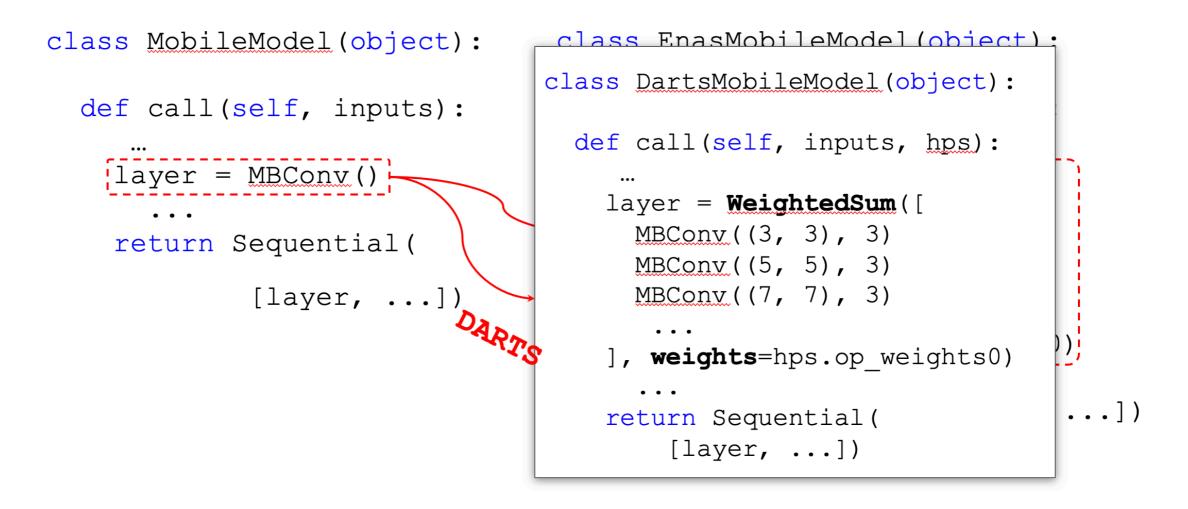
Example 2: Coupling in Efficient NAS



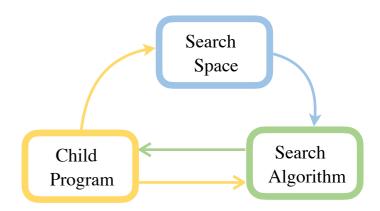


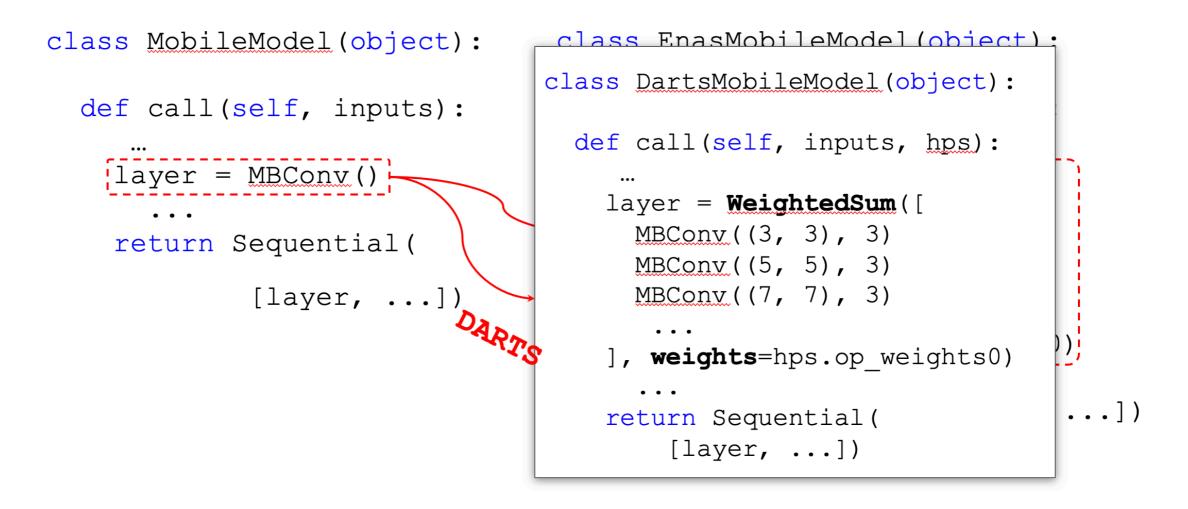
Example 2: Coupling in Efficient NAS



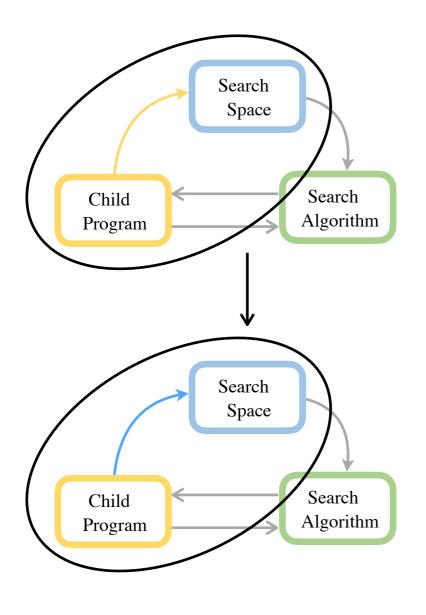


Example 2: Coupling in Efficient NAS

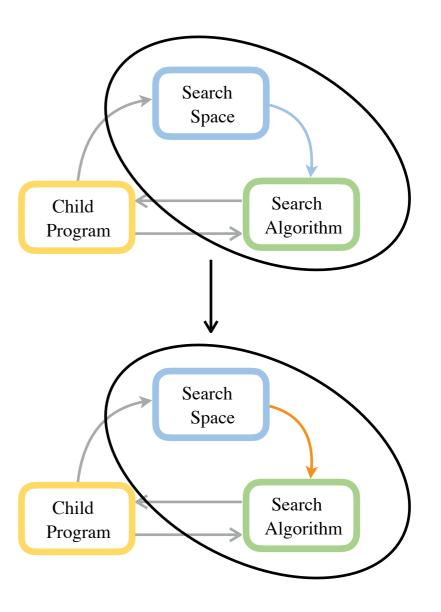




The Fluidity of Couplings

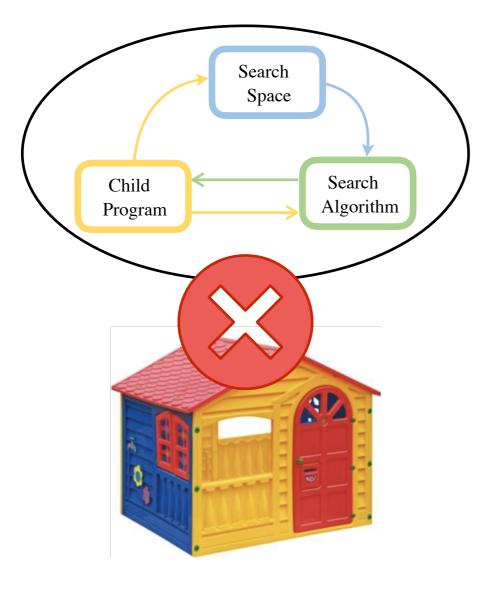


Change Search Space



Change Search Algorithm

What if?



 Search

 Child
 Search

 Program
 Search

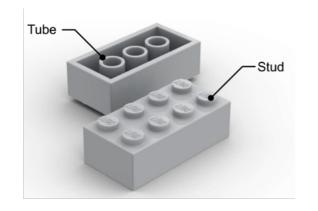
 Algorithm

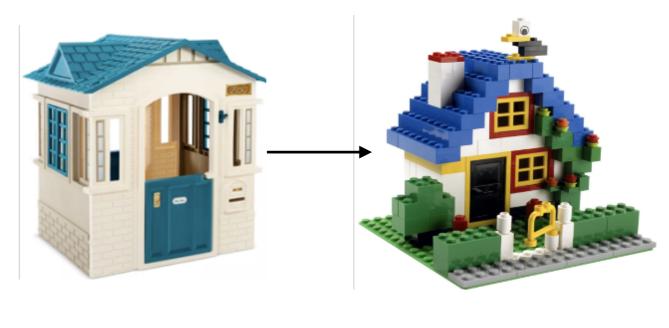
Fixed Coupling

Dynamic Coupling

Symbolic Programming for AutoML

Simple and unified interfaces

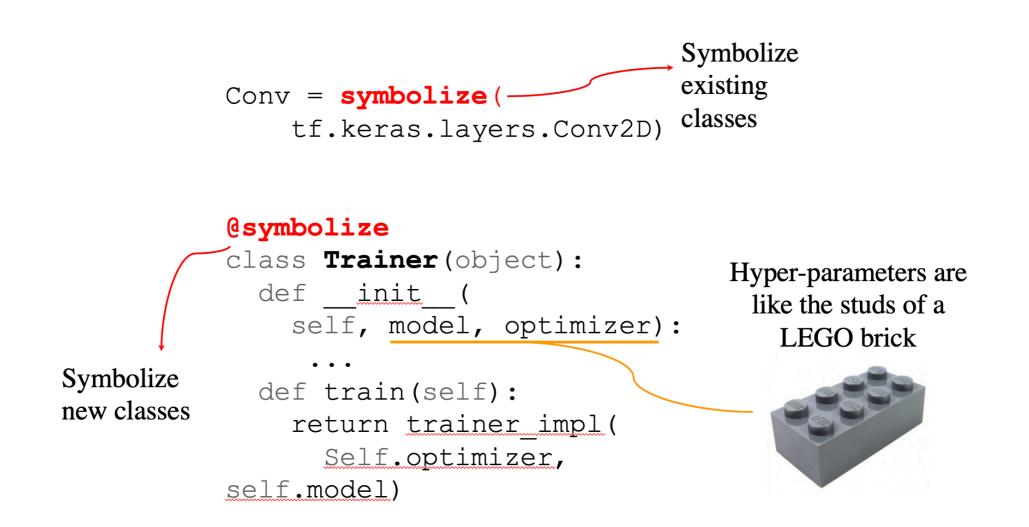


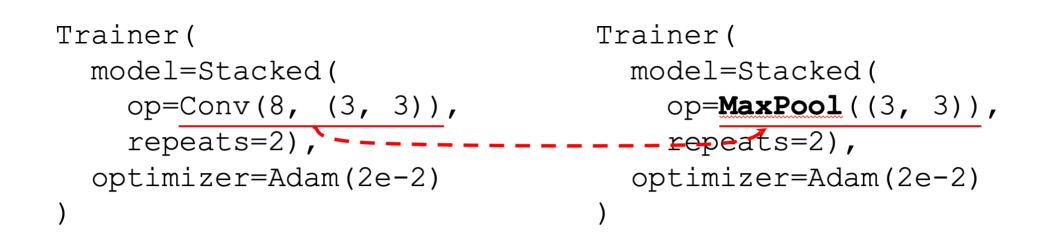


Fixed

Symbolic

Symbolize: Make regular program symbolically programmable





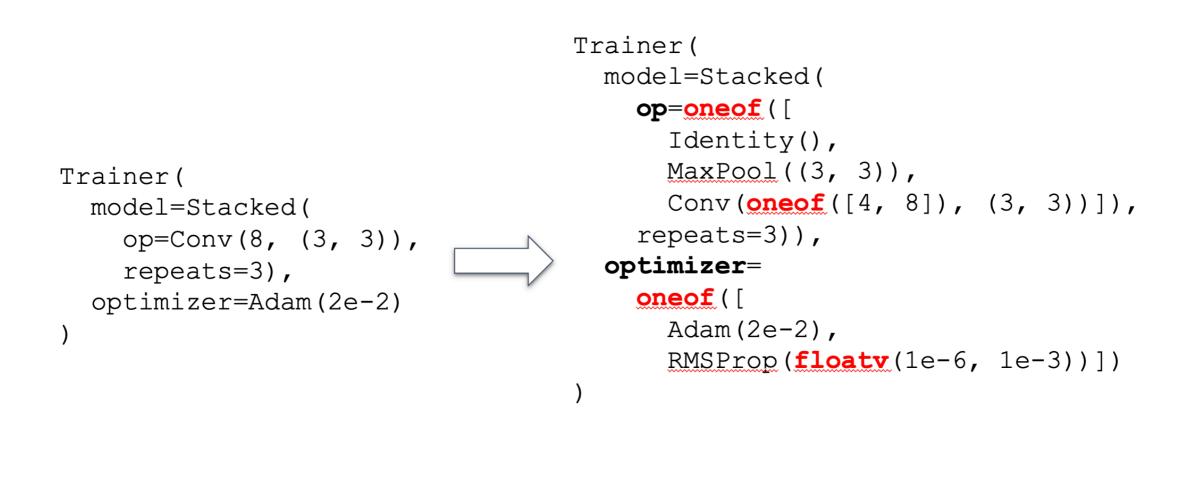
Program parts are not only compositional, but also can be modified programmatically.

Programming interfaces are provided for symbolic manipulation

def swap(k, v, parent): if isinstance(v, Conv): return MaxPool(v.kernel)

trainer.clone().rebind(swap)

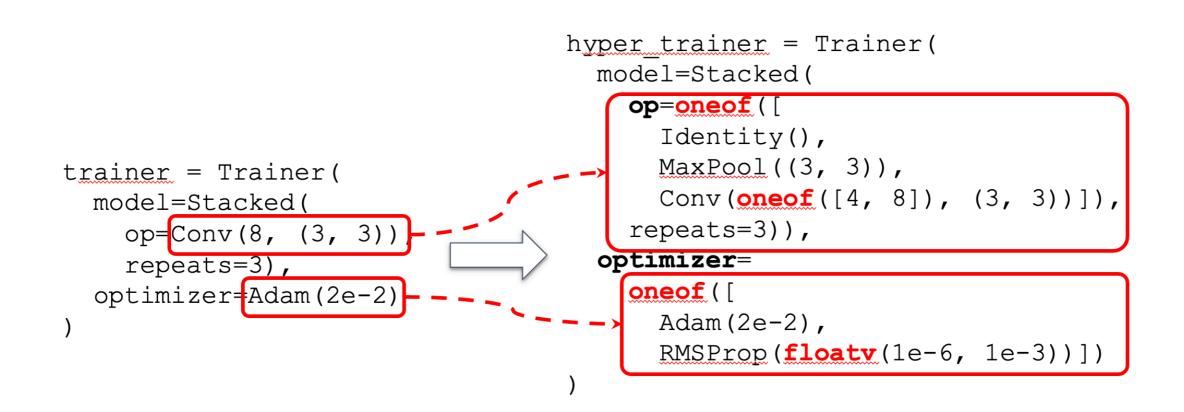
Clone trainer and replace all the Conv layers into MaxPools



Static Child Program

Search Space

From Static Program to Search Space



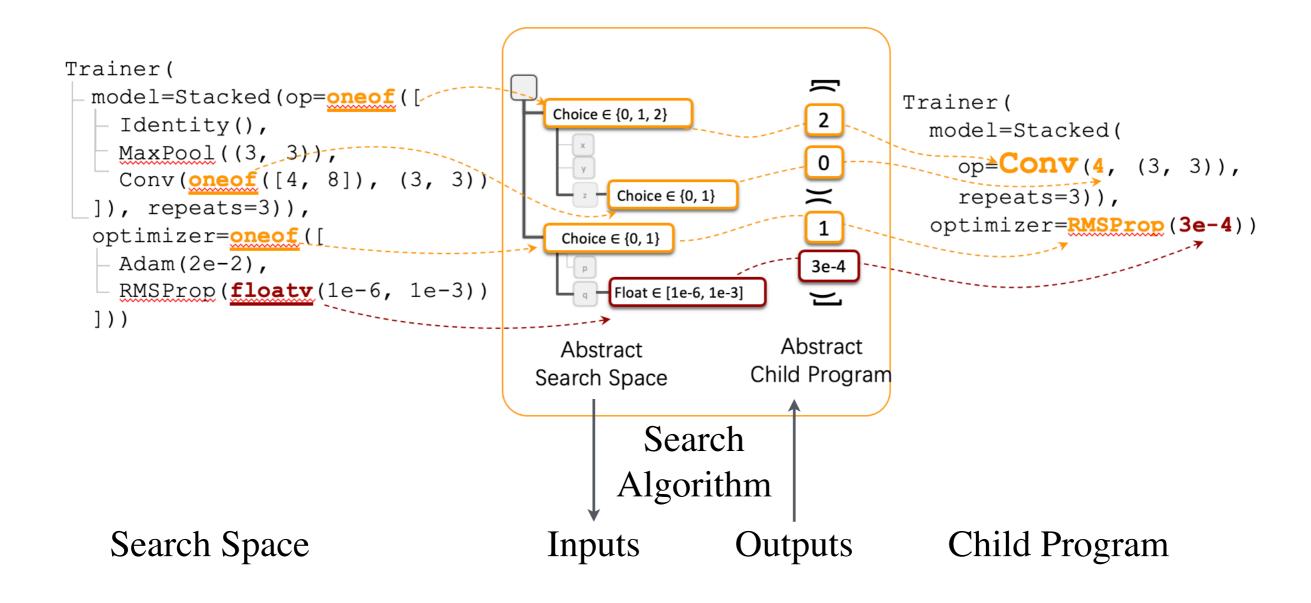
Static Child Program

Search Space

```
for trainer, feedback in sample(
    search_space=hyper_trainer,
    algorithm=PPO()):
    reward = trainer.train()
    feedback(reward)
```

Search as a feedback loop with sampled child programs

How Sample Works?



AutoML: System Design

3 Search Spaces:

- *S1*: Search the kernel size & expansion factor of the

inverted bottleneck units in MobileNetV2

- S2: Search the output filters of the inverted bottlenecks units in MobileNetV2

- *S3*: *S1* + *S2*

- 3 Search Algorithms:
- RS: Random Search
- Bayesian: Bayesian Optimisation
- TuNAS: Efficient Search Algorithm

#	Search space	Search algorithm	Lines of codes	Search cost	Train cost	Test accuracy	# of MAdds
1	(static)	N/A	N/A	N/A	1	73.1	300M
2	$(static) \rightarrow S_1$	RS	+23	25	1	73.7 († 0.6)	299M
3	\mathcal{S}_1	$RS \rightarrow Bayesian$	+1	25	1	73.9 († 0.8)	305M
4	\mathcal{S}_1	Bayesian \rightarrow TuNAS	+1	1	1	74.2 († 1.1)	301M
5	$(static) \rightarrow S_2$	TuNAS	+10	1	1	73.3 († 0.2)	307M
6	$\mathcal{S}_1, \mathcal{S}_2 ightarrow \mathcal{S}_3$	TuNAS	+1	2	1	73.8 († 0.7)	303M

PyGlove lets you use ~10 LoCs to switch between different spaces and algorithms

The Future of AutoDL:

- Symbolic Programming Based Infra
- Architecture -> Hyperparameter
- Architecture -> Hardware