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Neural Architecture Search Grows Fast
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The number of NAS papers rapidly increases.



What is Neural Architecture Search (NAS)?
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What is important to NAS?
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NASNet Search Space

MBConv Search Space

BayesOpt
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Evolution
Differentiable Search



NAS’s performance is saturated - Search Space

10NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size, IEEE TPAMI 2021



NAS’s performance is saturated - Search Algorithm

11NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size, IEEE TPAMI 2021

Multi-trial Search Weight-sharing Search



NAS is sub-optimal
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= NAS + Manually Designed Training Strategies



NAS is sub-optimal
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NAS is sub-optimal
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Model-1 Rank Model-2

HP-1
(LR=5.5, L2=1.5e-4) 56.9% > 55.6%

HP-2
(LR=1.1, L2=8.4e-4) 54.7% < 56.2%

AutoHAS: Efficient Hyperparameter and Architecture Search, NAS@ICLR 2021



AutoHAS: Efficient and Joint Search
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AutoHAS: Efficient and Joint Search

Integrate REINFORCE into AutoHAS
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AutoHAS: Weight Sharing
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AutoHAS: Differentiable vs. REINFORCE

Search for architecture, learning rate, weight decay
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AutoHAS improves SoTA models
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AutoHAS-discovered Hyperparameters

Search for drop-path ratio in EfficientNet
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AutoHAS-discovered Hyperparameters

Search for learning rate for MobileNet and ResNet
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AutoHAS-discovered Hyperparameters

Search for learning rate and weight decay for BERT



24AutoHAS: Efficient Hyperparameter and Architecture Search, NAS@ICLR 2021

AutoHAS works on different datasets
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AutoHAS works on different datasets
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AutoHAS vs. other HPO methods
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What’s else?
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NAHAS: Better Pareto Frontier 

Rethinking Co-design of Neural Architectures and Hardware Accelerators, arXiv 2021.02
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Joint Architecture and Accelerator Search

Rethinking Co-design of Neural Architectures and Hardware Accelerators, arXiv 2021.02

AutoHAS cannot handle hardware design
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Joint Architecture and Accelerator Search

Rethinking Co-design of Neural Architectures and Hardware Accelerators, arXiv 2021.02
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Joint Search vs. Phase Search

Rethinking Co-design of Neural Architectures and Hardware Accelerators, arXiv 2021.02
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Multi-trial vs. One-shot

Rethinking Co-design of Neural Architectures and Hardware Accelerators, arXiv 2021.02
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Co-design Improves > 1% ImageNet Accuracy

Rethinking Co-design of Neural Architectures and Hardware Accelerators, arXiv 2021.02
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AutoML: System Design

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020

Target: Scale AutoML horizontally and vertically

Design more algorithms

Apply to more applications
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Example 0: Triple-level Search

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020
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Example 1: Coupling between CP and SS

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020
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Example 1: Coupling between CP and SS

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020
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Example 2: Coupling in Efficient NAS

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020

Search
Space

Child
Program

Search
Algorithm



40
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Example 2: Coupling in Efficient NAS

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020
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The Fluidity of Couplings

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020
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What if?

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020
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Symbolic Programming for AutoML

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020

Simple and unified interfaces

Fixed Symbolic
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Symbolize: Make regular program symbolically programmable

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020
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Symbolic objects are mutable

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020

Program parts are not only 
compositional, but also can 

be modified 
programmatically.
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Programming interfaces are provided for symbolic manipulation

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020

Clone trainer and replace all the Conv layers into MaxPools
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From Static Program to Search Space

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020

Static Child Program Search Space
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From Static Program to Search Space

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020

Static Child Program Search Space
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Search Expressed as a For-loop

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020

for trainer, feedback in sample(
search_space=hyper_trainer, 
algorithm=PPO()):

reward = trainer.train()
feedback(reward)

Search as a feedback loop with sampled child programs
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How Sample Works?

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020

Search Space Inputs

Search
Algorithm

Outputs Child Program
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AutoML: System Design

PyGlove: Symbolic Programming for Automated Machine Learning, NeurIPS 2020

3 Search Spaces:
- S1: Search the kernel size & expansion factor of the 
inverted bottleneck units in MobileNetV2
- S2: Search the output filters of the inverted bottlenecks 
 units in MobileNetV2
- S3: S1 + S2

3 Search Algorithms:
- RS: Random Search
- Bayesian: Bayesian Optimisation
- TuNAS: Efficient Search Algorithm

PyGlove lets you use ~10 LoCs to switch between different spaces and algorithms
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Take Away

The Future of AutoDL：
– Symbolic Programming Based Infra
– Architecture -> Hyperparameter
– Architecture -> Hardware 


