

Network Pruning via Transformable Architecture Search

Xuanyi Dong^{1,2}, Yi Yang¹

¹ReLER, University of Technology Sydney

²Baidu Research

Search for the width of a three-layer CNN

INTRODUCTION

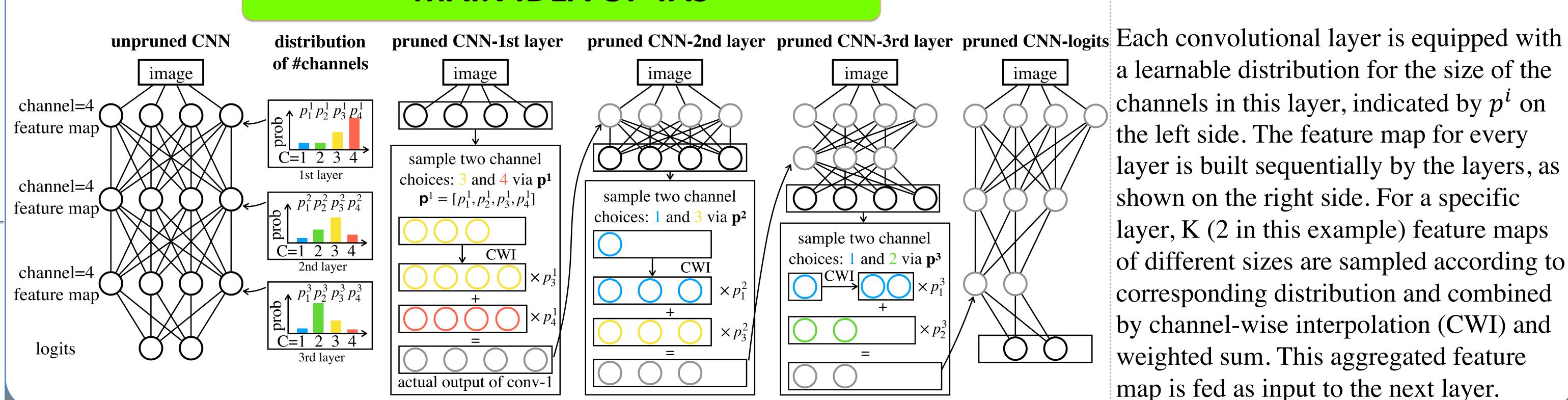
Transformable Architecture Search (TAS): search for the best size of a network, i.e., the width and depth.

Traditional Neural Architecture Search (NAS): search for the topology structure of a network.

We proposed a new paradigm for network pruning: Train a CNN -> Apply TAS for the CNN -> Transfer params.

Contribution:

- (1) A new pruning paradigm with SOTA performance.
- (2) A differentiable searching method for the network shape.



video demo for intermediate results

MAIN IDEA OF TAS

a learnable distribution for the size of the channels in this layer, indicated by p^{i} on the left side. The feature map for every layer is built sequentially by the layers, as shown on the right side. For a specific layer, K (2 in this example) feature maps of different sizes are sampled according to corresponding distribution and combined by channel-wise interpolation (CWI) and weighted sum. This aggregated feature

map is fed as input to the next layer.

OBJECTIVE

$$\mathcal{L} = -\log(\frac{\exp(\mathbf{z}_{y})}{\sum_{j=1}^{|\mathbf{z}|} \exp(\mathbf{z}_{j})}) + \lambda_{cost} \mathcal{L}_{cost}$$

$$\mathcal{L}_{cost} = \begin{cases} \log(\mathbb{E}_{cost}(\mathbb{A})) & F_{cost}(\mathbb{A}) > (1+t)R \\ 0 & otherwise \\ -\log(\mathbb{E}_{cost}(\mathbb{A})) & F_{cost}(\mathbb{A}) < (1+t)R \end{cases}$$

A is the set of parameters modeling the net config R is the target computational cost, e.g., 300M FLOPs $\mathbb{E}_{cost}(\mathbb{A})$ is the expectation of costs based on \mathbb{A} . $F_{cost}(A)$ is the actual cost of the searched architecture. Prune 40% FLOPs of ResNet-32 on CIFAR-100

IMPORTANCE OF TAS and KD

			The profile in the
	FLOPs	accuracy	channels
Pre-defined		68.18 %	Random Search pickup the best from 10 random configurations TAS
Pre-defined w/ Init	41.1 MB	69.34 %	
Pre-defined w/ KD	41.1 MB	71.40 %	
Random Search		68.57 %	automatically search for the
Random Search w/ Init	I .		best configuration
Random Search w/ KD			
TAS†		68.95 %	Init
TAS† w/ Init	42.5 MB	1	use pre-trained weights
TAS† w/ KD (TAS)	42.5 MB	72.41 %	KD

Pre-defined

each layer prune 77%

use knowledge distillation