INTRODUCTION

Transformable Architecture Search (TAS): search for
the best size of a network, 1.e., the width and depth.
o

Traditional Neural Architecture Search (NAS): search

for the topology structure of a network.

We proposed a new paradigm for network pruning:
Train a CNN -> Apply TAS for the CNN -> Transter params.
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Contribution:
(1) A new pruning paradigm with SOTA performance.
(2) A differentiable searching method for the network shape.
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Network Pruning via Transformable Architecture Search

MAIN IDEA OF TAS

pruned CNN-1st layer  pruned CNN-2nd layer pruned CNN-3rd layer pruned CNN-logits Each convolutional layer is equipped with

v ¥
7

K

000

'ReLER, University of Technology Sydney

“Baidu Research

Search for the width of a three-layer CNN

[=] 5, 74 [m]

= video demo for
Intermediate
results

SCAN
ME!

search
codes

=]

LFCO st (A) is the actual cost of the searched architecture' Prune 40% FLOPs of ResNet-32 on CIFAR-100
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