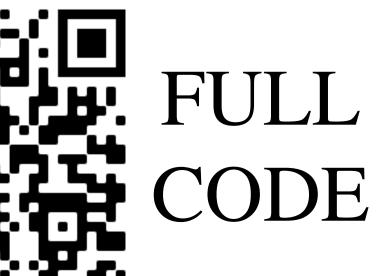


INTRODUCTION

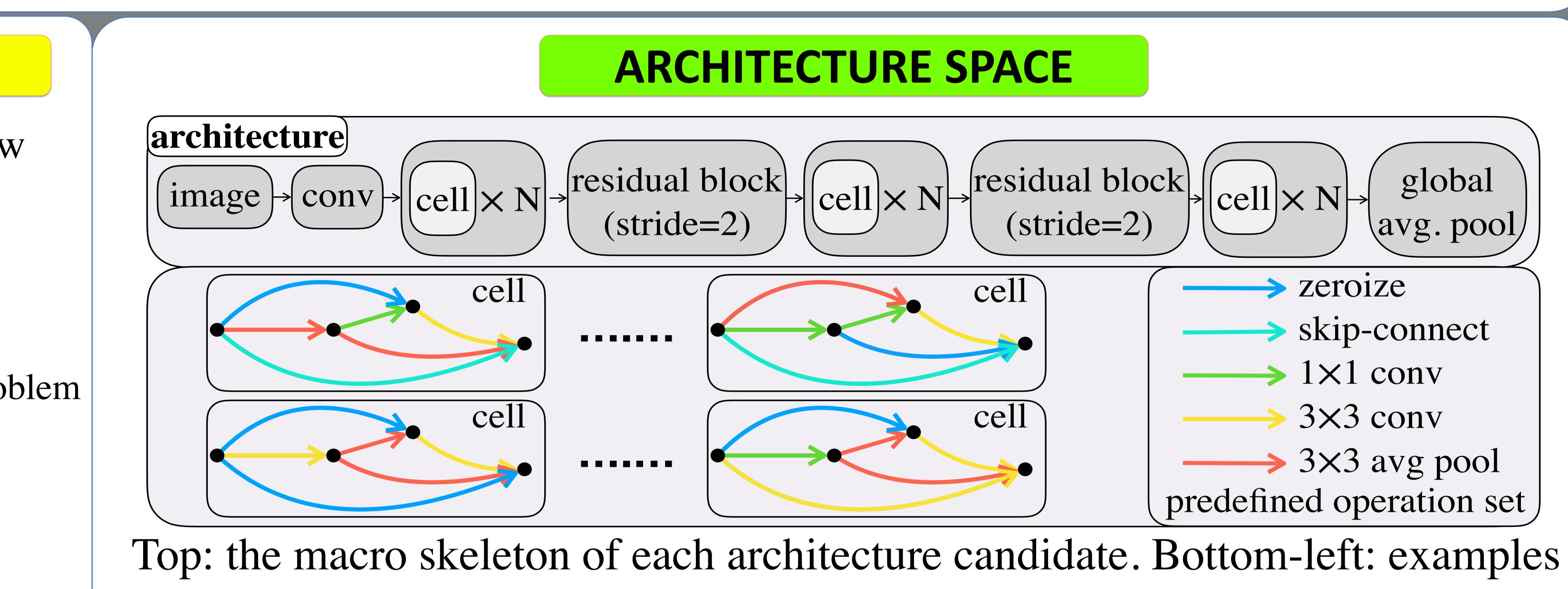
We propose NAS-Bench-201, a new NAS benchmark.

Motivation:


Different NAS methods have different setups, which raises a comparability problem when comparing their performance.

Highlighted features:

- Loss and accuracy on training / validation / test sets are provided *for* every epoch.
- Results of 15625 architectures on *three* datasets are provided.
- Results trained with *two* different kinds of hyper-parameters are provided.
- The architecture space is *agonistic* to all NAS algorithms.
- The weights of all trained architectures are provided.
- 10 NAS algorithms are open sourced in one code base.



NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search Xuanyi Dong, Yi Yang

of neural cell with 4 nodes. Each cell is a directed acyclic graph, where each edge is associated with an operation selected from a predefined operation set.

BENCHMARK 10 NAS METHODS

Method	Search	CIFAR-10		CIFAR-100		ImageNet-16-120	
	(seconds)	validation	test	validation	test	validation	test
RSPS	8007.13	80.42 ± 3.58	84.07±3.61	52.12 ± 5.55	52.31±5.77	27.22 ± 3.24	26.28 ± 3.09
DARTS-V1	11625.77	39.77 ± 0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	16.43 ± 0.00	16.32 ± 0.00
DARTS-V2	35781.80	39.77 ± 0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	16.43 ± 0.00	16.32 ± 0.00
GDAS	31609.80	89.89 ± 0.08	93.61±0.09	71.34 ± 0.04	70.70 ± 0.30	41.59 ± 1.33	41.71 ± 0.98
SETN	34139.53	84.04 ± 0.28	$87.64 {\pm} 0.00$	58.86 ± 0.06	59.05±0.24	$33.06 {\pm} 0.02$	32.52 ± 0.21
ENAS	14058.80	37.51 ± 3.19	53.89 ± 0.58	13.37 ± 2.35	13.96 ± 2.33	15.06 ± 1.95	14.84 ± 2.10
RSPS [†]	7587.12	84.16±1.69	87.66±1.69	59.00±4.60	58.33±4.34	31.56 ± 3.28	31.14 ± 3.88
DARTS-V1 ^{\dagger}	10889.87	39.77±0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	$16.43 {\pm} 0.00$	16.32 ± 0.00
DARTS-V 2^{\dagger}	29901.67	39.77 ± 0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	$16.43 {\pm} 0.00$	16.32 ± 0.00
\mathbf{GDAS}^{\dagger}	28925.91	90.00±0.21	93.51±0.13	71.14 ± 0.27	70.61±0.26	41.70 ± 1.26	41.84 ± 0.90
\mathbf{SETN}^{\dagger}	31009.81	82.25 ± 5.17	86.19±4.63	56.86±7.59	56.87±7.77	32.54 ± 3.63	31.90 ± 4.07
\mathbf{ENAS}^{\dagger}	13314.51	39.77±0.00	54.30 ± 0.00	15.03 ± 0.00	15.61 ± 0.00	$16.43 {\pm} 0.00$	16.32 ± 0.00
REA	0.02	91.19±0.31	$93.92{\pm}0.30$	71.81 ± 1.12	71.84 ± 0.99	45.15 ± 0.89	45.54 ± 1.03
RS	0.01	90.93±0.36	93.70±0.36	70.93 ± 1.09	71.04 ± 1.07	44.45 ± 1.10	44.57 ± 1.25
REINFORCE	0.12	91.09±0.37	93.85±0.37	71.61 ± 1.12	71.71±1.09	45.05 ± 1.02	45.24 ± 1.18
BOHB	3.59	90.82 ± 0.53	93.61±0.52	70.74 ± 1.29	70.85 ± 1.28	44.26 ± 1.36	44.42 ± 1.49
ResNet	N/A	90.83	93.97	70.42	70.86	44.53	43.63
optimal		91.61	94.37	73.49	73.51	46.77	47.31

PYPI API

Searching results of 10 NAS methods on 3 datasets

TAKE AWAY

NAS-Bench-201 helps you rly and quickly compare ur NAS method with others. The correlation of the odel's performance between ferent datasets is not high. Using the batch mean and r of BN for searching gorithm instead of accumulated mean and var.